Projective Embedding of [0, m] - Spaces
نویسنده
چکیده
A [0, m]-space is a linear space with the following property: For any point-line pair (x, G) there are at most m lines through x which are coplanar with G and which have no point in common with G. For every [0, m]-space (M, 90l) we define an order o r d M in a natural way. For dimM~>3 and o r d M ~ > 3 m + 2 , every [0, m]-space (M, 991) can be embedded in a projective space (P, £) with dim P = dim M and ord P = ord M. © 1995 Academic Press, Inc.
منابع مشابه
ar X iv : 0 81 0 . 23 57 v 1 [ m at h - ph ] 1 4 O ct 2 00 8 PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES
Noncommutative differential geometry over the Moyal algebra is developed following an algebraic approach. It is then applied to investigate embedded noncommutative spaces. We explicitly construct the projective modules corresponding to the tangent bundles of the noncommutative spaces, and recover from this algebraic formulation the metric, Levi-Civita connection and related curvature introduced...
متن کاملOn linear morphisms of product spaces
Let χ be a linear morphism of the product of two projective spaces PG(n, F ) and PG(m,F ) into a projective space. Let γ be the Segre embedding of such a product. In this paper we give some sufficient conditions for the existence of an automorphism α of the product space and a linear morphism of projective spaces φ, such that γφ = αχ. A.M.S. classification number: 51M35.
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملPositive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 70 شماره
صفحات -
تاریخ انتشار 1995